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Preliminaries

Outline

What is mathematical modeling in biology? Why do it?

Background on cardiac membrane models and rhythm.

Cardiac restitution mappings and their fixed points.

Predicting and controlling alternans.

Discussion and interactive activities!
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Preliminaries

Mathematical Models and Why We Use Them

A mathematical model is an attempt to describe a natural
phenomenon quantitatively.

Examples: Michaelis-Menten model of enzyme kinetics;
Hardy-Weinberg “Law” in genetics; fruit fly population models
pn = p0Q

n; etc.

Models are built upon assumptions and idealizations, but a good
model should have some predictive power. Use models to interpolate
and extrapolate beyond what is experimentally observable.

Experiments are expensive and time-consuming! Use models to
inform protocol.
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Background on cardiac membrane models and rhythm

The cell membrane

Source: OpenStax Anatomy and Physiology
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Background on cardiac membrane models and rhythm

Membrane potential
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Background on cardiac membrane models and rhythm

How is the membrane potential generated?
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Background on cardiac membrane models and rhythm

Some ion channels are voltage-gated
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Background on cardiac membrane models and rhythm

Resting potential

Source: OpenStax CNX
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Background on cardiac membrane models and rhythm

Depolarization

Source: OpenStax CNX
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Background on cardiac membrane models and rhythm

Peak potential

Source: OpenStax CNX
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Background on cardiac membrane models and rhythm

Excitation-Contraction Coupling
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Background on cardiac membrane models and rhythm

Mathematical modeling based upon Hodgkin-Huxley-Katz
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Background on cardiac membrane models and rhythm

Excitability

Cardiac tissue is an example of an excitable medium.

A sufficiently strong electrical stimulus can cause a cell’s
transmembrane voltage v to experience a prolonged elevation before
eventual return to rest.

Toilet-flushing analogy1

1Fittingly, I used the TeX command \flushright to right-justify the photo.
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Background on cardiac membrane models and rhythm

Action Potentials

Action potential: Prolonged elevation of transmembrane voltage v
following a superthreshold stimulus. In the absence of subsequent
stimulation, v eventually decays to the resting potential.
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Background on cardiac membrane models and rhythm

Pacing

Pacing: Repeated stimulation of cardiac cells.

Useful to explore how a cell responds to periodic stimulation. We’ll
refer to the pacing period as the basic cycle length (BCL) (see
figure).

Concept check: If a patient’s heart rate is 120 beats per minute,
what is their BCL?

BCL
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Background on cardiac membrane models and rhythm

Pacing continued...

Action potential duration (APD) and recovery time (diastolic interval,
DI) can be defined relative to a threshold voltage v = vthr.

We’ll let APDn denote the APD which follows the nth stimulus in a
paced cell, and DIn the subsequent DI.

BCL

n APDn+1 DI n+1APD n

timeBCL

DI
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Background on cardiac membrane models and rhythm

Types of rhythms

If BCL is large, the sequence {APDn} converges to a number APD∗.
If BCL is decreased, the sequence {APDn} may settle into a pattern
of repeated alternation between two different numbers. This
response, known as alternans, is abnormal.
Further reduction of BCL may prevent cells from responding to every
stimulus.

APD n DI n APDn+1 DI n+1
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Restitution, Mappings, and Fixed Points

Experiment: How DI affects APD

Shortening DI tends to shorten the subsequent APD. Why?

Sample experiment: (1) Excise a heart, perfuse it. (2) Apply a single
stimulus via an electrode to generate an AP. (3) Once AP ends, apply
a 2nd stimulus after a specified DI. (4) Record resulting APD.

Source: Laboratory of Daniel J. Gauthier.
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Restitution, Mappings, and Fixed Points

Results can be patient-specific, but same general trend

Source: Effect of Adrenergic Stimulation on Action Potential Duration Restitution in Humans, Circulation, 2003.
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Restitution, Mappings, and Fixed Points

Restitution

APD depends upon the preceding DI.

Increasing DI (i.e., giving more rest) typically yields longer APD, but
with diminished returns if DI is huge.

If plot APDn+1 versus DIn, data points tend to fall along a
restitution curve: APDn+1 = f (DIn).
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Restitution, Mappings, and Fixed Points

Restitution Mapping

If BCL constant, we can predict APDn+1 if we know APDn:

APDn+1 = f (DIn) = f (BCL−APDn).

Concept check: If a plot of APDn+1 versus DIn looks like the curve
below, what would a plot of APDn+1 versus APDn look like?

How can math help us understand whether alternans will occur?
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Restitution, Mappings, and Fixed Points

Digression: One-dimensional mappings

Suppose a sequence of numbers is defined recursively according to the
rule xn+1 = x2

n . Given x0, all subsequent numbers in the sequence are
uniquely determined.

If x0 = 1
2 , what are x1, x2, . . . ? What happens to xn as n becomes

larger and larger?

If x0 = 2, what are x1, x2, . . . ? What happens to xn as n becomes
larger and larger?

For which special choices of x0 does the sequence x1, x2, x3, . . .
remain constant?
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Restitution, Mappings, and Fixed Points

Fixed points

A fixed point of the recurrence xn+1 = f (xn) is a number x such that
f (x) = x .

If xn+1 = x2
n , then f (x) = x2. Fixed points satisfy f (x) = x , which

means x2 = x . There are two solutions: x = 0 and x = 1 are the only
fixed points.

Fixed points can be stable or unstable depending upon what
happens if we start from x0 near but not equal to the fixed point.
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Restitution, Mappings, and Fixed Points

Stability of Fixed points

Remember that xn+1 = x2
n has two fixed points: x = 0 and x = 1.

Concept check: Is x = 0 stable? Is x = 1 stable?
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Predicting and Controlling Alternans

Cardiac restitution mapping

Recall that we can predict APDn+1 if we know APDn:

APDn+1 = f (BCL−APDn),

where BCL is determined from the heart rate.

Concept check: If APD0 were a fixed point, what would the
restitution mapping APDn+1 = f (BCL−APDn) predict about
rhythm?
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Predicting and Controlling Alternans

Cardiac restitution mapping

Here is an example of a restitution function that was fit to data from
bullfrog hearts, collected using the above mentioned experiment:
f (x) = 392− 525e−x/40. The restitution mapping would be

APDn+1 = 392− 525e−(BCL−APDn)/40.
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Concept check: If the bullfrog experienced alternans, what would a
plot of APDn versus n look like?
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Predicting and Controlling Alternans

Cardiac restitution mapping

The figure below shows what happens if APD0 = 200 and

APDn+1 = 392− 525e−(BCL−APDn)/40,

with BCL = 500 (left panel) or BCL = 430 (right panel).
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Predicting and Controlling Alternans

What triggers alternans

When BCL is large enough (left panel), the restitution mapping

APDn+1 = 392− 525e−(BCL−APDn)/40,

has a stable fixed point.

If BCL dips below some threshold, the fixed point loses stability and
alternans results. The fixed point is still there—it’s just unstable!
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Predicting and Controlling Alternans

Controlling Alternans

It is known that APD alternans can lead to life-threatening rhythms,
such as ventricular fibrillation.

We will explain how to terminate alternans by applying small
adjustments to the heart rate.

Clinically, these adjustments can applied by an electrode attached to
a surgically implanted device.
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Predicting and Controlling Alternans

TDAS Control: Rob from the Rich, Give to the Poor

During each beat, have the electrode fire stimuli at times that are not
precisely BCL units of time apart.

Modify BCL by an amount proportional to the difference between the
two most recent APD values, replacing BCL with

BCL + γ(APDn −APDn−1).

The restitution mapping is modified accordingly:

APDn+1 = f (BCL + γ[APDn −APDn−1]−APDn).
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Predicting and Controlling Alternans

Wow—this actually works if γ is well-chosen!
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Predicting and Controlling Alternans

Discussion

Using linear algebra and multivariate calculus, it’s straightforward to
predict which γ values will yield successful control for a given heart
rate BCL.

This has worked experimentally in vitro.

There are some constraints to consider: We cannot delay the heart’s
native stimuli. It’s difficult to achieve control over the whole heart.

There are more sophisticated methods, such as far-field pacing, but
the mathematics requires more background.
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Predicting and Controlling Alternans
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Predicting and Controlling Alternans

Thank you!

For more information:
jcain2@math.harvard.edu
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