Panning for Precious Metals: How cells take up rare essential nutrients

Rachelle Gaudet Professor of Molecular and Cellular Biology Harvard University

What do we do in the Gaudet Lab?

Proteins as nanomachines that carry out a majority of cellular functions

• We investigate what these nanomachines look like – how they are shaped and how the parts move as they work

- We're interested in proteins that perform various functions at the surface of cells
 - They are sensors and entry/exit mechanisms

Why is important to know the structure of a protein? "Form ever follows function" - Louis Sullivan

Why is important to know the structure of a protein? "Form ever follows function" - Louis Sullivan

How big is a protein?

Sources: Sanjay ach, CC BY-SA 3.0, <u>https://commons.wikimedia.org/w/index.php?curid=2389127</u>; Wikipedia commons; TCBG <u>www.ks.uiuc.edu</u>; <u>www.rcsb.org</u>

Powers of 10: A relative scale of lengths

Coaxing proteins into crystals – to "see" them better

Sources: Sanjay ach, CC BY-SA 3.0, <u>https://commons.wikimedia.org/w/index.php?curid=2389127</u>; Wikipedia commons; TCBG <u>www.ks.uiuc.edu</u>; <u>www.rcsb.org</u>

Vapor diffusion setup for crystallization

Crystals required to increase the signal-to-noise to a detectable level

Over time, water leaves the drop and diffuses into the precipitant solution. The drop gets smaller and the macromolecule gets more concentrated in the presence of the precipitant.

Screening for crystallization

- **Trial-and-error process**
 - Determining conditions *a priori* requires the 3D structure...
- Screen hundreds of conditions
- Best conditions optimized by interpolation and screening of additives

Clear drop

Quasi-crystals

Denatured protein

Micro-crystals

Precipitate

Needles

Handling of Macromolecular Crystals

Courtesy of David Jeruzalmi

Diffraction data measurements

Courtesy of David Jeruzalmi

Light microscopy vs. crystallography

We want to understand membrane proteins at an atomic level

Homeostasis of divalent transition metals is essential for life

Electronic Transport Chain

Photosynthesis PSII

CH₁ CH₂

CH2 - CH2 - COO.

Oxygen Transport

Nutrition Facts

Per 30 g serving (about 1 cup)

Nramps are divalent metal transporters

- <u>Natural Resistance Associated Macrophage Protein</u>
- Some version of Nramp is present in most living organisms
- Import essential metals like iron, manganese, cobalt

Nramps are transition divalent metal transporters

Structure of an Nramp transporter

The bundle "rocks" within the scaffold to change substrate accessibility

Forrest and Rudnick, Physiology (2009)

The bundle "rocks" within the scaffold to change substrate accessibility

Forrest and Rudnick, Physiology (2009)

The bundle "rocks" within the scaffold to change substrate accessibility

Simplified model of metal transport

How do mutations in Nramp2 cause anemia?

Mutations lock the conformation of the transporter

Mutation 1:

Mutation 2:

From several still images – reconstruct a movie of protein

Eadweard Muybridge Library of Congress Prints and Photographs Division Public Domain, https://commons.wikimedia.org/w/index.php?curid=57260211

From several still images – reconstruct a movie of protein at work

Eadweard Muybridge, Animation: Nevit Dilmen – Public Domain Library of Congress Prints and Photographs Division <u>http://hdl.loc.gov/loc.pnp/cph.3a45870</u>

Nramp's metal site includes a methionine

Looking in from the intracellular vestibule:

Sequence conservation over ~2,700 sequences is high:

Nramps transport a range of transition metals

Nramps discriminate against divalent alkaline earth metal ions

Nramps *do* discriminate against alkaline earth metal ions, which are orders of magnitude more abundant.

The hard soft acid base theory offers a potential mechanistic explanation

Nramps do discriminate against alkaline earth metal ions, which are orders of magnitude more abundant.

The hard soft acid base theory offers a potential mechanistic explanation

S

Intermediate

will favor transition metals

In vivo metal-uptake assay to assess transport function of DraNramp

Conserved methionine is not required for Co²⁺ or Fe²⁺ uptake

Aaron Bozzi

In vitro assay allows for the direct monitoring of transport

In vitro assay allows for the direct monitoring of transport

Lukas Bane and Aaron Bozzi

From kinetic data to enzyme kinetic constants

Step 1: getting initial velocity (v_0) from time course plots

- Initial velocity (v₀) is the rate of transport in the linear phase of the time course
- Fit the data to a line to get the slope
- Repeat this process with data at different concentrations of substrate (here, Cd²⁺)

From kinetic data to enzyme kinetic constants

Step 2: from the initial velocity (v_0) vs. substrate concentration, obtain kinetic constants, K_M and V_{max}

Plot initial velocity (v_0) vs substrate concentration

V_{max} is the maximal velocity (transporter is saturated with substrate)

 K_M is the concentration of substrate at which the velocity is half maximal

Metal-binding site methionine prevents enables cadmium but prevents calcium (and magnesium) import

0-1200 µM M²⁺

M230 likely represents an evolutionary trade-off

Why can't we measure Mn²⁺ transport in vitro?

Membrane potential ($\Delta \Psi$) \approx -140 mV in bacteria

Membrane potential perturbs apparent metal binding affinity

Membrane potential perturbs apparent metal binding affinity

Nramp Mn²⁺ transport kinetics

Mechanistic insights into Nramps

- Conserved methionine prevents calcium and magnesium transport but promotes cadmium uptake
- Anemia-causing mutations change the conformational dynamics of Nramps and impair transport
- Transporter shows voltage dependence

Wilhelm Weihofen

Lukas Bane

Christina Zimanyi

Aaron Bozzi

Anne McCabe

Additional contributors: Ben Barnett Brandon Lee Antonia Lott Casey Zhang

Funding:

NIH General Medicine March of Dimes Foundation

Supercomputer time at Texas Advanced Computing Center XSEDE (NSF-MCA93S028) SBGrid support for computational infrastructure

Synchrotron time at NE-CAT APS (NIH P41 GM103403 and S10 RR029205; DOE DE-AC02-06CH11357)

Jenifer Brown

UIUC Abhishek Singharoy

Chris Chipot Klaus Schulten

MIT: Eduardo Guillen and Hidde Ploegh Brandeis: Ming-Feng Tsai and Chris Miller Zurich: Raimund Dutzler

Nancy Andrews (Duke) Mathieu Cellier (INRS-IAF)

