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Overview

This activity was designed for an audience of classroom high school biology teachers as part of a professional
development program to further their knowledge in a research field. It has not been formally formatted or tested
for a high school student audience because we believe that teachers are the best interpreters of content for
their students. Therefore, we welcome teachers to adapt this activity for their own classroom needs.

Objective

During this activity, teachers will be exposed to algorithmic thinking in the context of bioinformatics. Using an
artificial data set, they’ll execute a simplified version of a popular algorithm used to assemble genomic
sequences from next-generation sequencing data.

References

Adapted from: Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "Why are de Bruijn graphs useful for
genome assembly?." Nature biotechnology 29.11 (2011): 987.

Some figures from Wikipedia.

Introduction

The advent of novel sequencing technologies has generated data completely unlike any kind that scientists
have had to deal with in the past. As a result, the tandem development of new algorithms for making sense of



this data has been essential to scientific progress. In this activity, we’ll explore a popular way to represent and
visualize DNA sequences in a computer, and we’ll develop our own algorithm for putting them together.

Activity

Many next-generation sequencing technologies work by stitching several short snippets of a larger sequence
together. In this activity, we’ll suppose that we’re sequencing the following plasmid, represented by the diagram
below:

-

(Compeau et. al 2011)

The circular sequence in question (which we’ll choose to start at the A marked by the arrow in the figure) is
ATGGCGTGCA, but a next-generation sequencing workflow does not read this directly. Instead, it might output
a few smaller subsequences from many copies of the plasmid. For example, the “data” could look something
like the collection of sequences below, all of which are taken from the original one:

CAATGGC ATGGCGT CGTGCAA GGCGTGC TGCAATG

This is the raw information that the computer is responsible for making sense of. The question is, given a set
of short DNA sequences extracted from copies of a larger one, what is the larger DNA sequence? As
scientists, our job is to think of a program that will allow the computer to reliably answer this. And since a
computer will need to execute whatever procedure we come up with, we’ll need to specify it as a set of
completely unambiguous instructions.

The algorithm

Such a set of instructions has a technical name: an algorithm. Though we typically give the instructions to a
computer, humans can (and often do) execute algorithms, too; you don’t need to be a computer to think
computationally. For example, long division is an algorithm whose input is two numbers and whose output is a
new number, their quotient. Elementary school students learn a set of bulletproof instructions that take them
from input to output, even if they don’t always execute them flawlessly. We want an algorithm here to take us
from the set of short reads to the single long one. Together, we’ll work through a popular algorithm used for this
task.

Looking for patterns
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Good algorithms are based on clever observations about the data on which they operate, and scientists are
trained to make these observations by looking for patterns. One key observation that will underlie our algorithm
is the following: the sequences have regions of overlap. Let’s visualize this in the following table.

Problem 1: In the table below, fill each row with the sequence from the data that overlaps with the one
above it. (For your convenience, the data is replicated below.)

CAATGGC ATGGECT CGTGCAA GGCGTGC TGCAATG

Notice that we've nearly solved the problem by hand! The original, longer sequence is just the sequence
formed by listing the characters unique to each column. But keep in mind that this data is artificial; in real life
we typically have many more than five sequences to arrange. Our brains found the pattern and successfully
assembled the plasmid’s code in this case, but this strategy isn’t going to work more generally.

Luckily, there’s still a lot to be learned here. Regions that don’t overlap with one of the adjacent sequences
(colored in blue and green) are only two characters long. The regions that do overlap with both adjacent
sequences are three characters long. This is nothing but a more quantitative statement of our original
observation! And quantifying this pattern makes it much more useful: subsequences of length two can contain
information about the order in which the data should be arranged, since they indicate overlap with an adjacent
data sequence. Our strategy for the algorithm will be to patch together two-letter subsequences with the
three-letter ones that “link” them together.

Suppose this was the only knowledge we had of the structure of the data. Explicitly, suppose we only knew that
two-letter sequences could help us arrange the subsequences, but not the specific ones. To cover every
possibility, we could list every single candidate subsequence of length two. They’re tabulated below:

AA AT TG GG

GC CG GT CA
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Can you find all the three-letter subsequences? This just means we’re looking for every unique three-letter
sequence present in the data, to be linked by the two-letter ones.

Problem 2: Find every distinct three-letter sequence contained in the data. List them in the table
below—it should be completely filled. (No repeats, and order does not matter!)

CAATGGC ATGGCGT CGTGCAA GGCGTGC TGCAATG

ATG T66 T6C

caT GCA

Graphical thinking

Now, we’ll introduce a visual tool to help us finish out our problem. Many algorithms, including the one we’re
exploring, organize their logic with a graphical representation of the data. Here, a “graph” is just the technical

word for a diagram like this:

(wikipedia)

A flexible way to represent nearly any kind of data, graphs are supported by a deep mathematical literature
which we can use to prove facts about our data. They have two major components. First are the circles, or the
nodes, which represent different data points, and second are the arrows joining them, or the edges, which
represent a relationship between them. For example, Twitter could use a graph to represent the structure of a
social network. Each account might correspond to a unique node, and an edge between two nodes might
indicate that one account follows the other. In the example graph above, account 1 follows account 2, and
accounts 3 and 4 follow each other.

We'll build a graph of our data to visualize our problem. In our case, nodes will be the two-letter sequences
from above, and edges will correspond to three-letter sequences. I've included the nodes on the next page
to get you started.
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AT

ATG

GTG

ATG TGG GGC TGC AAT

GCG 616 CGT CAA GCA




To complete the graph, we just need to fill in the edges, two of which are already drawn. But | haven't told you
what relationship an edge should represent for this particular graph, so here are the rules for filling them in: an
edge should be drawn only when the two-letter sequences overlap by one character to form one of the
data’s three-letter sequences, in the order indicated by the arrow.

The above figure is included as a clarifying example. In a), drawing an arrow from GA to TG is not valid since
the second character in GA and the first character in TG are not the same (they don’t overlap). If we fix this as
in b)—where we’'ve changed GA to GT—we get a valid edge. Notice that we could also try to flip the arrow as in
¢), which, though seemingly legal, is not a valid edge for us since TGT is not one of our three-letter sequences
from the data.

Problem 3: Fill in the rest of the graph, crossing out three-letter sequences from the bank as you fill
them in.

Now that we've represented our data graphically, a mathematical fact guarantees that the original sequence
can be directly reconstructed by traversing an eulerian path through the graph. We’ll do so by looking at the
overlap between the labels of the visited edges in the order we visit them.

Detour through the Bridges of Kénigsberg
In the mathematical study of graphs, a path that visits each edge only once is called an Eulerian cycle, named

after the mathematician Leonard Euler. After looking at a map of a town named Koénigsberg (on the right), Euler
was tasked with finding a tour of the city that crossed each bridge once and only once.
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(wikipedia)

His insight was to formulate the question as a graph theory problem. To do so, he constructed a corresponding
graph whose edges represent the bridges of Kénigsberg and whose nodes represent the pieces of land joined
by the bridges, pictured on the right. Notice there are no arrows in this graph, meaning we are free to move in
any direction across an edge or bridge. When he cast the problem in this language, he was able to prove that
there is no cycle through the graph that visits each edge once, and so there is no tour through the city that
visits each bridge once!

For graphs that do contain an Eulerian cycle (an easy condition to verify), there are efficient algorithms that
bioinformaticians use to find them. Interestingly,the seemingly similar question of finding a path that visits each
node once and only once belongs to the class of so-called NP-hard problems, a set of questions for which no
known efficient algorithmic solution exists. A literal million-dollar question, the Clay Mathematical Institute will
give a prize of $1,000,000 to anyone who can prove that efficient algorithms for NP-hard problems exist.

Reconstructing the sequence through an Eulerian cycle

Our problem is to find an Eulerian cycle through the sequence graph constructed above. More specifically, we’'ll
try to find the one that reconstructs the original sequence. If we were computers, we’'d need a step-by-step set
of instructions to do so efficiently, and we’d use other data not included in this example to decide which cycle is
the right one. Here is where the algorithm would take over and finish the job, but try to come up with your own
solution!
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Problem 4: find an Eulerian cycle through the sequence graph, and list the edges in the order you visit
them in the table below. Note: you can start at any node you want! Remember, the DNA is circular, so
the “start” and “end” are really up to you. Each column should correspond to a unique
character—write it in the final row.

-_—
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