Transitioning to Revised Draft MA Science & Technology/Engineering Standards

ABE Program, Harvard
October 13, 2015
Think-Pair-Share

- I hand you maple seed.
- Imagine you plant it in the ground and a tree grew.
- I hand you a piece of that tree.

Where did all that stuff come from?

- Write individually (1 min)
- Share with neighbor (2 min)

http://www.learner.org/vod/vod_window.html?pid=77
Think-Pair-Share

- Did you cite...(raise your hand)
 - Water
 - Soil
 - Minerals/Nutrients
 - Air
 - Carbon Dioxide

- Minds of Our Own (1997)
- Also check out A Private Universe (1987)
 Annenberg Learner (www.learner.org)
Why is STE important?

★ Understanding science and engineering issues and decisions in our life
 ★ E.g., Climate change; Natural gas pipeline; Renewable energy designs

★ Readiness for post-secondary success (College and Career Readiness)

★ Note: Science includes technology/engineering (Science = STE)
Students will be prepared to:

• Analyze scientific phenomena and solve technical problems in real-world contexts using relevant science and engineering practices and disciplinary core ideas.

• Use appropriate scientific and technical reasoning to support, critique, and communicate scientific and technical claims and decisions.

• Appropriately apply relevant mathematics in scientific and technical contexts.
Science & engineering practices

1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
What an STE standard looks like

<table>
<thead>
<tr>
<th>5-PS1</th>
<th>Matter and Its Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS1-1. Use a model of matter as made of particles too small to be seen to explain common phenomena involving gases, phase changes between gas and liquid, and dissolving. [Clarification Statement: Examples of common phenomena the model should be able to describe include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]</td>
<td></td>
</tr>
</tbody>
</table>

- Articulates expected performance/demonstration
- Does not limit curriculum and instruction to the included practice
Core Ideas

★ Key understandings that allow students to interpret and explain the world around them
 ★ Natural phenomena (e.g., mass of a tree, carbon cycling, climate change)
 ★ Designed systems (e.g., energy systems, transportation systems)

★ Progress in sophistication K-12
Origin of tree mass?
2001/2006 STE

★ Gr. 3-5, LS #11: Describe how energy derived from the sun is used by plants to produce sugars (photosynthesis) and is transferred within a food chain from producers (plants) to consumers to decomposers.

★ Gr. 6-8, LS #16: Recognize that producers (plants that contain chlorophyll) use the energy from sunlight to make sugars from carbon dioxide and water through a process called photosynthesis. This food can be used immediately, stored for later use, or used by other organisms.

★ HS, LS 2.4: Identify the reactants, products, and basic purposes of photosynthesis and cellular respiration. Explain the interrelated nature of photosynthesis and cellular respiration in the cells of photosynthetic organisms.
Origin of tree mass?
Draft revised STE

★ 5-LS1-1. Support an argument with evidence that plants get the materials they need for growth and reproduction chiefly through a process in which they use air, water, and energy from the sun to produce sugars and plant materials.

★ MS-LS2-3. Develop a model to describe the cycling of matter among living and nonliving parts of an ecosystem including through the process of photosynthesis and cellular respiration.

★ HS-LS1-5. Use a model to illustrate how photosynthesis uses light energy to transform carbon dioxide and water into oxygen and chemical energy stored in the bonds of glucose and other carbohydrates.
Implications for curriculum and instruction

<table>
<thead>
<tr>
<th>Shift in revised standards</th>
<th>Shift in curriculum & instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance: Organized around core explanatory ideas that explain the world around us</td>
<td>The goal of teaching needs to shift from facts and concepts to explaining phenomena</td>
</tr>
<tr>
<td>Rigor: Central role for science and engineering practices with concepts</td>
<td>Inquiry- and design-based learning is not a separate activity; all STE learning should involve engaging in practices to build and use knowledge</td>
</tr>
<tr>
<td>Coherence: ideas and practices build across time and between disciplines</td>
<td>Teaching involves building a coherent storyline across time</td>
</tr>
</tbody>
</table>

Adapted from: Brian Reiser, Northwestern University, 2013
Commonalities
Among the Practices in Science, Mathematics, and English Language Arts

Based on work by Tina Chuek elli.stanford.edu

Math

M1: Make sense of problems and persevere in solving them

M2: Reason abstractly & quantitatively

M6: Attend to precision

M7: Look for & make use of structure

M8: Look for & make use of regularity in repeated reasoning

M4: Models with mathematics

S2: Develop & use models

S5: Use mathematics & computational thinking

E1: Demonstrate independence in reading complex texts, and writing and speaking about them

E2: Build a strong base of knowledge through content rich texts

E5: Read, write, and speak grounded in evidence

M3 & E4: Construct viable arguments and critique reasoning of others

E6: Use technology & digital media strategically & capably

M5: Use appropriate tools strategically

E3: Obtain, synthesize, and report findings clearly and effectively in response to task and purpose

S1: Ask questions and define problems

S3: Plan & carry out investigations

S4: Analyze & interpret data

S8: Obtain, evaluate, & communicate information

S7: Engage in argument from evidence

Science

E7: Come to understand other perspectives and cultures through reading, listening, and collaborations

ELA

NGSS@NSTA

STEM STARTS HERE

www.nsta.org/ngss
Resources

★ STE Model Curriculum Units and rubric
 ★ www.doe.mass.edu/candi/model/files.html
 ★ www.doe.mass.edu/candi/model/rubrics/STE.docx

★ Characteristics of an STE Classroom
 ★ www.doe.mass.edu/STEM/Standards-BasedClassroom.docx

★ Strand maps
 ★ www.doe.mass.edu/stem/standards/StrandMaps.html
+/− of NGSS

★ Positives
★ Integration of practices and core ideas
★ Grade-by-grade K-5
★ Focus on scientific literacy

★ Needed adjustment
★ Vague standards
★ Missing Pre-K
★ Weak representation of technology/engineering
★ Lack of attention to college and career readiness
★ High school assumptions ‘requiring’ 3 courses
Next steps

<table>
<thead>
<tr>
<th>Date</th>
<th>ESE action</th>
<th>District action</th>
</tr>
</thead>
</table>
| Public draft through 2014-2015 | • STEM pathways; implications for upper-level HS courses
 • Edits based on input
 • Develop Framework resources
 • Post model curriculum units | Optional
 • Transition to standards in curriculum & instruction
 • Use to inform educator goals, district determined measures |
| Move to official public comment and adoption process 2015-16 | | |
| Multi-year implementation & transition period (~3 yrs) | • Provide support for transition
 • Adjust MCAS | Transition to revised standards |

www.doe.mass.edu/boe/docs/2013-10/item2.html
Science, Technology Engineering, and Mathematics (STEM)

The review of the Massachusetts Science and Technology/Engineering (STE) Curriculum Framework started in spring 2009, and is now anticipated to be completed SY 2015-16. This page is intended to provide an overview, timeline, and periodic updates on the review process, related documents, and drafts for public comment.

At the October ESE Board meeting the Department laid out the timeline for moving forward with revised Science and Technology/Engineering standards. The Department will make the draft revised standards public but will not be moving them forward to a public adoption process until the 2015-16 school year. This provides guidance on the key directions the revised STE standards will represent and illustrates that they support broader ESE initiatives, such as college and career readiness, while recognizing that many districts are already engaged in multiple major initiatives. Districts have the opportunity to do planning and curriculum work with the draft revised standards prior to formal adoption and implementation. It is important to note that the current STE standards remain in effect and the STE MCAS remains aligned to the current STE standards. Each district will make its own decision about whether and/or how to use the draft revised standards until formal adoption.

Draft Revised Science and Technology/Engineering Standards

- Frequently Asked Questions regarding the release of the MA Draft Revised Science and Technology/Engineering (STE) Standards
- MA Draft Revised Science and Technology/Engineering Standards (standards only)
- MA Draft Revised Science and Technology/Engineering Standards (with Foundation Boxes)
- Strand Maps of Draft Revised MA Science and Technology/Engineering Standards

Related Resources

- Matrix of the Science and Engineering Practices (from NGSS)
- Matrix of Disciplinary Core Idea Progressions
- Crosswalk of the 2001/2006 STE Standards and Draft Revised STE Standards: Organized by Current Standards
- Crosswalk of the 2001/2006 STE Standards and Draft Revised STE Standards: Organized by Draft Revised Standards
- The Case for an Integrated, Grade-by-Grade Approach PreK-8
- Value of Crosscutting Concepts & Nature of Science in Curriculum
- Presentation: Overview of the MA Draft Revised STE Standards (PPT)